
Volta: Trading Realized Volatility On-Chain

Abstract

Volta is a protocol for trading realized volatility as a native on-chain primitive. The
system implements dual liquidity pools that automatically redistribute collateral based on
calculated changes in exponentially weighted moving average (EWMA) volatility. In con-
trast to existing derivatives protocols that require users to express volatility views through
options strategies, Volta allows direct exposure to volatility itself through fungible ERC-20
tokens.

The protocol introduces several novel mechanisms: self-contained synthetic leverage
without liquidators, path-dependent token pricing based on volatility trajectories, and au-
tomatic pool rebalancing triggered by high-frequency oracle updates. These features are
implemented as a single set of non-upgradeable contracts deployed on HyperLiquid.

1 Introduction

Volatility derivatives allow market participants to take positions on the magnitude of price
movements rather than price direction. In traditional finance, these instruments include vari-
ance swaps, VIX futures, and volatility indices that collectively represent hundreds of billions
in notional value.

Current decentralized finance protocols provide limited volatility exposure. Options proto-
cols require users to construct complex strategies (straddles, strangles) across multiple strike
prices and expiration dates to approximate volatility positions. These constructions suffer from
time decay, require active management, and provide imperfect volatility exposure due to their
dependency on directional price movements.

Volta implements a mechanism for direct volatility exposure through dual liquidity pools
and deterministic rebalancing. The protocol calculates realized volatility using exponentially
weighted moving averages and automatically redistributes collateral between opposing pools
based on volatility changes. This design enables users to take long or short positions on volatil-
ity through simple token minting and redemption.

2 Dual Pool Architecture

The core mechanism of Volta consists of two USDC liquidity pools representing opposing
volatility positions:

VOL(+) Pool: Benefits when realized volatility increases.
VOL(-) Pool: Benefits when realized volatility decreases.

Each pool issues fungible ERC-20 tokens (VOL+ and VOL-) that represent proportional claims
on pool collateral. Token redemption value is calculated as:

1



TokenPrice =
TotalPoolTokenCollateral

TotalPoolTokenSupply
(1)

Users mint tokens by depositing USDC collateral into the corresponding pool. The minting
ratio is determined by the current collateral-to-supply ratio at the time of deposit.

2.1 Volatility-Based Rebalancing

On each oracle update, the protocol computes a transfer amount proportional to the volatility
delta, scaled by the pool that pays out. To ensure that the transfer ratio remains bounded
between 0 and 1, this raw signal is passed through the Gaussian error function:

∆C = erf
(
k ·∆rV ol

)
· Poolfrom, (2)

Poolfrom =


Pool−, ∆rV ol > 0 (volatility rises; payout from VOL− to VOL+),

Pool+, ∆rV ol < 0 (volatility falls; payout from VOL+ to VOL−),

0, ∆rV ol = 0 .

(3)

Here:

• ∆rV ol is the realized volatility change since the last update,

• k is a fixed coefficient controlling sensitivity,

• erf(·) ensures that the effective multiplier is always in [0,1).

This formulation guarantees that transfers are capped by available collateral in the paying pool
while avoiding pathological jumps for large volatility moves. It also preserves asymmetric return
profiles when pools are imbalanced.

3 Oracle Integration and Volatility Calculation

3.1 HyperLiquid Oracle System

Volta leverages HyperLiquid’s native price oracle, which aggregates spot prices from major
centralized exchanges and updates every three seconds.

The protocol queries the oracle at the beginning of each user interaction and recalculates volatil-
ity before executing any state changes. This ensures that all operations reflect the most current
market conditions.

3.2 EWMA Volatility Calculation

Realized variance is updated continuously using a smoothing factor that depends on the elapsed
time between oracle updates. Specifically,

vart = vart−1 · eα∆t +
(
1− eα∆t

)
·
(
ln

Pt

Pt−1

)2

, (4)

where

2



• Pt is the asset price at the current oracle update,

• ∆t is the elapsed time since the previous update,

• α < 0 is the continuous-time smoothing rate,

• vart is the exponentially weighted variance at time t.

Realized volatility is then defined as

rV olt =
√
vart. (5)

Note. Because α < 0, the factor eα∆t always lies in (0, 1) and acts as a decay weight on
the previous variance. This convention eliminates the need to write an explicit negative in the
exponent while ensuring exponential smoothing behaves correctly. In the special case where ∆t
is constant, this formulation reduces to the familiar discrete-time EWMA with a fixed decay
parameter λ ∈ (0, 1).

Recent price movements receive higher weighting than historical data, providing responsive
volatility measurement that adapts to changing market regimes.

4 Anti-Front-Running Design

Every contract function begins with an oracle query and a volatility recalculation, so user in-
teractions are always priced against data that is only one oracle tick old.

The oracle updates on a fixed three-second interval, and when combined with the mandatory
transaction fee on each interaction, this creates strong economic disincentives for front-running.
An attempted attack—such as buying immediately before a pool payout is applied—will yield
less profit than the fee required to execute the trade, resulting in negative expected value for
would-be front-runners.

5 Synthetic Leverage Mechanism

5.1 Leveraged Token Issuance

Users can mint leveraged positions by depositing collateral and selecting a leverage factor. The
number of tokens minted is given by

Tokensminted =
Collateraldeposit · L

P
, (6)

where

• Collateraldeposit is the amount of stablecoins deposited,

• L is the chosen leverage factor (e.g. 2x, 3x),

• P is the current token price determined by the protocol’s settlement function.

Any tokens beyond the 1x equivalent are escrowed to back the leveraged exposure. The pro-
tocol monitors the escrow continuously and burns the excess tokens if the collateral buffer is
exhausted.

3



5.2 Automatic Position Management

Leveraged positions are monitored continuously. Whenever a user opens or updates a position,
the corresponding liquidation price is precomputed based on the collateral deposited, the lever-
age factor, and the escrowed tokens. If the market reaches this liquidation price, the contract
executes liquidation automatically:

• Burns escrowed tokens

• Seizes remaining collateral

• Closes the position

This eliminates the need for liquidators, auction mechanisms, or manual intervention. The
maximum loss is predetermined and bounded by the initial collateral deposit.

Leveraged positions on Volta are closed automatically when the collateral buffer breaches
the protocol threshold (see Sections 4.2–4.3). Checking every position against an exact trigger
on each oracle update is costly. Instead, Volta discretizes liquidation thresholds into buckets
and evaluates only the buckets that are crossed when the oracle updates. This keeps on-chain
work predictable while preserving user fairness.

5.3 Liquidation Conditions

A leveraged position becomes subject to automatic liquidation when its collateral buffer is fully
depleted relative to the escrowed exposure. Formally,

Collateralbuffer ≤ 0, (7)

at which point the protocol burns the escrowed tokens and seizes the posted collateral.

Note. Unlike traditional margin systems, there is no minimum collateralization ratio or liq-
uidation threshold parameter. Positions either remain open while their buffer is positive, or are
closed immediately once the buffer is exhausted. This design eliminates cascading liquidations
and simplifies the closure logic.

5.4 Bucket Definition

Let x denote the liquidation trigger (e.g., a price or health ratio) expressed in the contract’s
fixed-point units. We define a bucket function

Bk(x) = ⌈x rounded to its first k significant binary digits⌉

that applies a ceiling to x, zeroing the remaining bits upward. All positions whose trigger maps
to the same Bk(x) are indexed into that bucket.

Intuition. The bucket width scales with the magnitude of x, yielding approximately constant
percentage precision across the operating range while remaining cheap to compute via bitwise
operations. By applying a ceiling rather than a symmetric rounding rule, the computed liqui-
dation price is always slightly higher than the true threshold by at most one bucket’s width.
This ensures the protocol never liquidates too late and avoids losing collateral to dust. Users
may therefore be liquidated marginally early, but never late.

4



Rounding Mode. Volta adopts a ceiling function rather than round-to-nearest. This guar-
antees Bk(x) ≥ x, ensuring that liquidation always occurs at or slightly above the true liquida-
tion price.

Intuition. The bucket width scales with the magnitude of x, yielding approximately con-
stant percentage precision across the operating range while remaining cheap to compute via bit
operations. On each oracle tick the contracts (i) compute the current trigger, (ii) determine
which buckets were crossed, and (iii) process only those buckets. Oracle ticks precede any state
changes.

5.5 Dust and Accounting

Rounding a trigger to Bk(x) creates a small delta (dust) between the bucket boundary and the
exact trigger. Volta tracks dust explicitly and refunds the dust ont he next interaction.

6 Path Dependency and Pool Dynamics

6.1 Token Price Behavior

VOL+ and VOL- token prices exhibit path-dependent behavior driven by three variables:

• Pool collateral balance,

• Outstanding token supply,

• Realized volatility trajectory.

Two periods with identical starting and ending volatility levels can still produce different
token returns because of how collateral flows interact with the current token supply. This
path dependency emerges naturally from the continuous rebalancing mechanism and results in
non-linear return profiles for both VOL+ and VOL.

6.2 Pool Imbalance Effects

When pools become imbalanced in size, volatility changes have disproportionate effects on pool
gains. For example, if the VOL+ pool contains significantly less collateral than the VOL- pool,
a given increase in volatility will result in larger percentage gains for VOL+ token holders.
This asymmetry is governed by the transfer function in Section 2.1, which uses the minimum
pool balance as a scaling factor.

7 Fee Structure

The protocol implements a fee structure designed to generate revenue while discouraging ex-
ploitative behavior.

The absence of redemption and liquidation fees eliminates the need to adjust liquidation thresh-
olds to account for exit costs, which would otherwise effectively increase leverage ratios.

5



Fee Type Rate Application

Minting Fee 30 bps Applied to USDC deposits
Redemption Fee 0 bps No fee on token redemptions
Liquidation Fee 0 bps No fee on automatic liquidations
Leverage Funding Fee [TBD] Applied to leveraged positions
Adjustment Fee [TBD] Applied during pool rebalancing

Table 1: Protocol Fee Structure

8 Risk Considerations

8.1 Oracle Risk

The protocol’s reliance on HyperLiquid’s oracle creates dependency on the underlying price feed
accuracy and availability. Oracle manipulation or failure could affect volatility calculations and
pool rebalancing.

8.2 Pool Depletion Risk

The use of the error function when calculating adjustment amounts prevents either pool from
being drained entirely.

Disclaimer

This paper is for informational purposes only and does not constitute investment advice. The
protocol involves significant risks including total loss of deposited capital. Users should carefully
consider their risk tolerance and conduct their own research before interacting with the protocol.

6


	Introduction
	Dual Pool Architecture
	Volatility-Based Rebalancing

	Oracle Integration and Volatility Calculation
	HyperLiquid Oracle System
	EWMA Volatility Calculation

	Anti-Front-Running Design
	Synthetic Leverage Mechanism
	Leveraged Token Issuance
	Automatic Position Management
	Liquidation Conditions
	Bucket Definition
	Dust and Accounting

	Path Dependency and Pool Dynamics
	Token Price Behavior
	Pool Imbalance Effects

	Fee Structure
	Risk Considerations
	Oracle Risk
	Pool Depletion Risk


